1. ACID
单体式应用一般都会有一个关系型数据库,由此带来的好处是应用可以使用 ACID transactions,可以带来一些重要的操作特性:
- 原子性 – 任何改变都是原子性的
- 一致性 – 数据库状态一直是一致性的
- 隔离性 – 即使交易并发执行,看起来也是串行的
- 持久性 – 一旦交易提交了就不可回滚
1.1. 原子性(A)
所有的系统都受惠于原子性操作。当我们考虑可用性的时候,没有理由去改变分区两侧操作的原子性。而且满足ACID定义的、高抽象层次的原子操作,实际上会简化分区恢复。
1.2. 一致性(C)
ACID的C指的是事务不能破坏任何数据库规则,如键的唯一性。与之相比,CAP的C仅指单一副本这个意义上的一致性,因此只是ACID一致性约束的一个严格的子集。ACID一致性不可能在分区过程中保持,因此分区恢复时需要重建ACID一致性。推而广之,分区期间也许不可能维持某些不变性约束,所以有必要仔细考虑哪些操作应该禁止,分区后又如何恢复这些不变性约束。
1.3. 隔离性(I)
隔离是CAP理论的核心:如果系统要求ACID隔离性,那么它在分区期间最多可以在分区一侧维持操作。事务的可串行性(serializability)要求全局的通信,因此在分区的情况下不能成立。只要在分区恢复时进行补偿,在分区前后保持一个较弱的正确性定义是可行的。
1.4. 持久性(D)
牺牲持久性没有意义,理由和原子性一样,虽然开发者有理由(持久性成本太高)选择BASE风格的软状态来避免实现持久性。这里有一个细节,分区恢复可能因为回退持久性操作,而无意中破坏某项不变性约束。但只要恢复时给定分区两侧的持久性操作历史记录,破坏不变性约束的操作还是可以被检测出来并修正的。通常来讲,让分区两侧的事务都满足ACID特性会使得后续的分区恢复变得更容易,并且为分区恢复时事务的补偿工作奠定了基本的条件。
2. 分布式系统的一致性模型
分布式系统中常见的三种一致性模型
- 强一致性:当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值。这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据 CAP 理论,这种实现需要牺牲可用性。
- 弱一致性:系统并不保证续进程或者线程的访问都会返回最新的更新过的值。系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。
- 最终一致性:弱一致性的特定形式。系统保证在没有后续更新的前提下,系统最终返回上一次更新操作的值。在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。DNS 是一个典型的最终一致性系统。
对于 CAP 来说,放弃强一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择。
在工程实践中,基于 CAP 定理逐步演化,就提出了 Base 理论。
3. BASE理论
eBay的架构师Dan Pritchett源于对大规模分布式系统的实践总结,在ACM上发表文章提出BASE理论,BASE理论是对CAP理论的延伸,核心思想是即使无法做到强一致性(Strong Consistency,CAP的一致性就是强一致性),但应用可以采用适合的方式达到最终一致性(Eventual Consitency)。
BASE是指基本可用(Basically Available)、软状态( Soft State)、最终一致性( Eventual Consistency)。
3.1. 基本可用(Basically Available)
基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。
BASE 的可用性是通过支持局部故障而不是系统全局故障来实现的。下面是一个简单的例子:如果将用户分区在 5 个数据库服务器上,BASE 设计鼓励类似的处理方式,一个用户数据库的故障只影响这台特定主机那 20% 的用户。这里不涉及任何魔法,不过它确实可以带来更高的可感知的系统可用性。
电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。如在双十一秒杀活动中,如果抢购人数太多超过了系统的 QPS 峰值,可能会排队或者提示限流,这就是通过合理的手段保护系统的稳定性,保证主要的服务正常,保证基本可用。
3.2. 软状态( Soft State)
软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。
3.3. 最终一致性( Eventual Consistency)
最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。
3.4. ACID和BASE的区别与联系
ACID是传统数据库常用的设计理念,追求强一致性模型。BASE支持的是大型分布式系统,提出通过牺牲强一致性获得高可用性。
ACID和BASE代表了两种截然相反的设计哲学
在分布式系统设计的场景中,系统组件对一致性要求是不同的,因此ACID和BASE又会结合使用。
3.5. CAP 及 Base 的关系
Base 理论是在 CAP 上发展的,CAP 理论描述了分布式系统中数据一致性、可用性、分区容错性之间的制约关系,当你选择了其中的两个时,就不得不对剩下的一个做一定程度的牺牲。
Base理论则是对CAP理论的实际应用,也就是在分区和副本存在的前提下,通过一定的系统设计方案,放弃强一致性,实现基本可用,这是大部分分布式系统的选择,比如NoSQL系统、微服务架构。