iostat是I/O statistics(输入/输出统计)的缩写,用来动态监视系统的磁盘操作活动。 通过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动情况, 负载信息。
语法
[root@ihorn-dev ~]# iostat --help
Usage: iostat [ options ] [ <interval> [ <count> ] ]
Options are:
[ -c ] [ -d ] [ -h ] [ -k | -m ] [ -N ] [ -t ] [ -V ] [ -x ] [ -y ] [ -z ]
[ -j { ID | LABEL | PATH | UUID | ... } ]
[ [ -T ] -g <group_name> ] [ -p [ <device> [,...] | ALL ] ]
[ <device> [...] | ALL ]
参数说明
-C 显示CPU使用情况
-d 显示磁盘使用情况
-k 以 KB 为单位显示
-m 以 M 为单位显示
-N 显示磁盘阵列(LVM) 信息
-n 显示NFS 使用情况
-p[磁盘] 显示磁盘和分区的情况
-t 显示终端和CPU的信息
-x 显示详细信息
-V 显示版本信息
示例
[root@ihorn-dev ~]# iostat
Linux 3.10.0-123.9.3.el7.x86_64 (ihorn-dev) 12/23/2016 _x86_64_ (4 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
7.16 0.00 4.38 0.15 0.00 88.31
Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
vda 9.76 0.17 76.21 1326593 579891120
vdb 3.45 0.30 91.66 2313573 697435684
dm-0 8.41 0.30 91.66 2312677 697435684
dm-1 0.15 0.11 0.46 841696 3471701
dm-2 0.00 0.00 0.00 29879 2880
dm-3 0.00 0.00 0.00 15825 2304
dm-4 0.11 0.01 0.34 58159 2576270
dm-5 0.01 0.10 0.12 730393 88275
cpu属性值说明:
%user:CPU处在用户模式下的时间百分比。
%nice:CPU处在带NICE值的用户模式下的时间百分比。
%system:CPU处在系统模式下的时间百分比。
%iowait:CPU等待输入输出完成时间的百分比。
%steal:管理程序维护另一个虚拟处理器时,虚拟CPU的无意识等待时间百分比。
%idle:CPU空闲时间百分比。
注:如果%iowait的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。
disk属性值说明:
tps:该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输”意思是“一次I/O请求”。多个逻辑请求可能会被合并为“一次I/O请求”。“一次传输”请求的大小是未知的。
kB_read/s:每秒从设备(drive expressed)读取的数据量;
kB_wrtn/s:每秒向设备(drive expressed)写入的数据量;
kB_read:读取的总数据量;
kB_wrtn:写入的总数量数据量;
这些单位都为Kilobytes。
显示详细信息
[root@ihorn-dev ~]# iostat -x
Linux 3.10.0-123.9.3.el7.x86_64 (ihorn-dev) 12/23/2016 _x86_64_ (4 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
7.16 0.00 4.38 0.15 0.00 88.31
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
vda 0.00 5.09 0.02 9.74 0.17 76.21 15.66 0.02 1.74 3.17 1.74 0.64 0.62
vdb 0.00 5.37 0.02 3.43 0.30 91.66 53.31 0.01 4.27 1.22 4.29 0.74 0.26
dm-0 0.00 0.00 0.02 8.39 0.30 91.66 21.86 0.03 3.18 1.22 3.19 0.31 0.26
dm-1 0.00 0.00 0.00 0.15 0.11 0.46 7.52 0.00 1.24 0.66 1.26 1.21 0.02
dm-2 0.00 0.00 0.00 0.00 0.00 0.00 19.20 0.00 1.25 2.44 0.58 0.48 0.00
dm-3 0.00 0.00 0.00 0.00 0.00 0.00 20.77 0.00 0.52 0.85 0.30 0.34 0.00
dm-4 0.00 0.00 0.00 0.11 0.01 0.34 6.30 0.00 1.68 1.37 1.68 1.67 0.02
dm-5 0.00 0.00 0.00 0.00 0.10 0.12 71.66 0.00 0.97 0.40 1.36 0.55 0.00
disk属性值说明:
- rrqm/s: 每秒进行 merge 的读操作数目。即 rmerge/s,(当系统调用需要读取数据的时候,VFS将请求发到各个FS,如果FS发现不同的读取请求读取的是相同Block的数据,FS会将这个请求合并Merge);
- wrqm/s: 每秒进行 merge 的写操作数目。即 wmerge/s
- r/s: 每秒完成的读 I/O 设备次数。即 rio/s
- w/s: 每秒完成的写 I/O 设备次数。即 wio/s
- rsec/s: 每秒读扇区数。即 rsect/s
- wsec/s: 每秒写扇区数。即 wsect/s
- rkB/s: 每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。
- wkB/s: 每秒写K字节数。是 wsect/s 的一半。
- avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。
- avgqu-sz: 平均I/O队列长度。
- await: 平均每次设备I/O操作的等待时间 (毫秒)。这里可以理解为IO的响应时间,一般地系统IO响应时间应该低于5ms,如果大于10ms就比较大了。
- svctm: 平均每次设备I/O操作的服务时间 (毫秒)。
- %util: 一秒中有百分之多少的时间用于 I/O 操作,即被io消耗的cpu百分比,例如,如果统计间隔1秒,该设备有0.8秒在处理IO,而0.2秒闲置,那么该设备的%util = 0.8/1 = 80%,所以该参数暗示了设备的繁忙程度。一般地,如果该参数是100%表示设备已经接近满负荷运行了(当然如果是多磁盘,即使%util是100%,因为磁盘的并发能力,所以磁盘使用未必就到了瓶颈)。
备注:如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明I/O 队列太长,io响应太慢,则需要进行必要优化。如果avgqu-sz比较大,也表示有当量io在等待。
如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,一般读取速度有较多的wait。 同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。
另外 await 的参数也要多和 svctm 来参考。差的过高就一定有 IO 的问题。
avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小。如果数据拿的大,才IO 的数据会高。也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。
svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。
别人一个不错的例子.(I/O 系统 vs. 超市排队)
举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧? 除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了.还有就是收银员的速度了,如果碰上了连 钱都点不清楚的新手,那就有的等了.另外,时机也很重要,可能 5 分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义 (不过我还没发现什么事情比排队还无聊的).
I/O 系统也和超市排队有很多类似之处:
r/s+w/s 类似于交款人的总数
平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
平均服务时间(svctm)类似于收银员的收款速度
平均等待时间(await)类似于平均每人的等待时间
平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
I/O 操作率 (%util)类似于收款台前有人排队的时间比例.
设备IO操作:总IO(io)/s = r/s(读) +w/s(写)
平均等待时间=单个I/O服务器时间*(1+2+…+请求总数-1)/请求总数
每秒发出的I/0请求很多,但是平均队列就4,表示这些请求比较均匀,大部分处理还是比较及时。
rrqm/s 队列中每秒钟合并的读请求数量(当系统调用需要读取数据的时候,VFS将请求发到各个FS,如果FS发现不同的读取请求读取的是相同Block的数据,FS会将这个请求合并Merge)
wrqm/s 队列中每秒钟合并的写请求数量
r/s 每秒钟完成的读请求数量
w/s 每秒钟完成的写请求数量
rMB/s 每秒钟读取的数量,读IOPS=(rMB/s) / (r/s),IOPS:一次磁盘的连续读或者连续写称为一次磁盘 I/O,随机读写频繁的应用的关键衡量指标,IOPS = 1s/(寻道时间+旋转延迟+数据传输时间)
wMB/s 每秒钟写入的数量,写IOPS=(wMB/s) / (w/s)
avgrq-sz 平均请求扇区的大小,平均每次请求的大小,avgrq-sz < 32K 随机存取为主。 avgrq-sz > 32K 顺序存储为主
avgqu-sz 平均请求队列的长度,此值越小越好,avgqu-sz > 2 可以认为存在I/O性能问题
await 平均每次请求的等待时间,单位毫秒,一般系统IO响应时间应该低于5ms,如果大于10ms就比较大了。等待时间包括了队列时间和服务时间,await和svctm越接近越好,代表几乎无需等待,反之差值越大,队列的时间越长,应用得到的响应时间变慢, 还可参考vmstat结果b参数(等待资源的进程数)和wa参数(IO等待所占用CPU时间百分比)
svctm 平均每次请求的服务时间,即磁盘读或写操作执行的时间,包括寻道,旋转时延,和数据传输等时间。(寻道时间:是指将读写磁头移动至正确的磁道上所需要的时间。寻道时间越短,I/O操作越快,目前磁盘的平均寻道时间一般在3-15ms。旋转延迟: 是指盘片旋转将请求数据所在扇区移至读写磁头下方所需要的时间。旋转延迟取决于磁盘转速,通常使用磁盘旋转一周所需时间的1/2表示。比如,7200 rpm的磁盘平均旋转延迟大约为601000/7200/2 = 4.17ms,而转速为15000 rpm的磁盘其平均旋转延迟约为2ms。数据传输时间: 是指完成传输所请求的数据所需要的时间,它取决于数据传输率,其值等于数据大小除以数据传输率。目前IDE/ATA能达到133MB/s,SATA II可达到300MB/s的接口数据传输率,数据传输时间通常远小于前两部分消耗时间,简单计算时可忽略。) (r/s+w/s)(svctm/1000)=util,如果util达到100%,那么此时svctm=1000/(r/s+w/s),假设IOPS是1000,那么svctm大概在1毫秒左右,如果长时间大于这个数值,说明系统出了问题。
util 设备的利用率,如果util接近100%,则说明设备的能力趋向于饱和(如果是多磁盘,即使%util是100%,因为磁盘的并发能力,所以磁盘使用未必就到了瓶颈)
参考资料
http://linuxtools-rst.readthedocs.io/zh_CN/latest/tool/iostat.html
http://www.ha97.com/4546.html