Redis 是一种内存数据库,将数据保存在内存中,读写效率要比传统的将数据保存在磁盘上的数据库要快很多。但是一旦进程退出,Redis 的数据就会丢失。
为了解决这个问题,Redis 提供了 RDB 和 AOF 两种持久化方案,将内存中的数据保存到磁盘中,避免数据丢失。
AOF( append only file )持久化以以协议文本的方式,将所有对数据库进行过写入的命令(及其参数)记录到 AOF 文件,以此达到记录数据库状态的目的。并在 Redis 重启时在重新执行 AOF 文件中的命令以达到恢复数据的目的。AOF 的主要作用是解决数据持久化的实时性。
antirez 在《Redis 持久化解密》一文中讲述了 RDB 和 AOF 各自的优缺点:
- RDB 是一个紧凑压缩的二进制文件,代表 Redis 在某个时间点上的数据备份。非常适合备份,全量复制等场景。比如每6小时执行 bgsave 备份,并把 RDB 文件拷贝到远程机器或者文件系统中,用于灾难恢复。
- Redis 加载 RDB 恢复数据远远快于 AOF 的方式
- RDB 方式数据没办法做到实时持久化,而 AOF 方式可以做到。
1. AOF的使用
1.1. 相关参数
# 是否开启AOF,默认关闭
appendonly yes
# 指定 AOF 文件名
appendfilename appendonly.aof
# Redis支持三种刷写模式:
# appendfsync always #每次收到写命令就立即强制写入磁盘,类似MySQL的sync_binlog=1,是最安全的。但该模式下速度也是最慢的,一般不推荐使用。
appendfsync everysec #每秒钟强制写入磁盘一次,在性能和持久化方面做平衡,推荐该方式。
# appendfsync no #完全依赖OS的写入,一般为30秒左右一次,性能最好但是持久化最没有保证,不推荐。
#在日志重写时,不进行命令追加操作,而只是将其放在缓冲区里,避免与命令的追加造成DISK IO上的冲突。
#设置为yes表示rewrite期间对新写操作不fsync,暂时存在内存中,等rewrite完成后再写入,默认为no,建议yes
no-appendfsync-on-rewrite yes
#当前AOF文件大小是上次日志重写得到AOF文件大小的二倍时,自动启动新的日志重写过程。
auto-aof-rewrite-percentage 100
#当前AOF文件启动新的日志重写过程的最小值,避免刚刚启动Reids时由于文件尺寸较小导致频繁的重写。
auto-aof-rewrite-min-size 64mb
1.2. 文件同步
redis提供了多种AOF缓冲区同步文件策略,有appendfsync控制
- appendfsync always #命令写入aof_buf后调用系统fsync同步到AOF文件,fsync完成后线程返回
- appendfsync everysec #命令写入aof_buf后调用系统write操作,write完成后线程返回,fsync同步文件操作由专门的线程每秒调用一次
- appendfsync no #令写入aof_buf后调用系统write操作,不对AOF文件做fsyunc同步,同步磁盘操作由操作系统负责,通常同步周期最长30秒
1.3. 重写机制
随着运行时间的流逝, AOF 文件会变得越来越大。为了解决这的问题, Redis 需要对 AOF 文件进行重写(rewrite): 创建一个新的 AOF 文件来代替原有的 AOF 文件, 新 AOF 文件和原有 AOF 文件保存的数据库状态完全一样, 但新 AOF 文件的体积小于等于原有 AOF 文件的体积。 AOF重写降低了文件占用空间,同时更小的AOF文件可以更快地被redis加载
2. 触发机制
手动触发
bgrewriteaof命令
自动触发
auto-aof-rewrite-percentage 100 # 当前AOF文件空间和上一次重写后AOF文件空间的比值
auto-aof-rewrite-min-size 64mb #运行AOF重写文件最小体积,默认为64M
其他配置
重写时每次批量写入硬盘的数据量
# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes
重启加载
AOF持久化开启并存在AOF文件时,优先加载AOF文件。AOF关闭或者AOF文件不存在时,加载RDB文件
redis-check-aof –fix命令用于修复AOF文件的错误
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全,redis提供了aof-load-truncated配置来兼容这种情况,默认开启,加载AOF文件时,当遇到此问题时会忽略并继续启动
aof-load-truncated yes
3. AOF 持久化的实现
如上图所示,AOF 持久化功能的实现可以分为命令追加( append )、文件写入( write )、文件同步( sync )、文件重写(rewrite)和重启加载(load)。其流程如下:
- 命令追加(append):所有的写命令会追加到 AOF 缓冲中。
- 文件写入(write)和文件同步(sync):AOF 缓冲区根据对应的策略向硬盘进行同步操作。
- 文件重写(rewrite):随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩的目的。
- 重启加载(load):当 Redis 重启时,可以加载 AOF 文件进行数据恢复。
3.1. 命令追加
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
当 AOF 持久化功能处于打开状态时,Redis 在执行完一个写命令之后,会以协议格式(也就是RESP,即 Redis 客户端和服务器交互的通信协议 )将被执行的写命令追加到 Redis 服务端维护的 AOF 缓冲区末尾。
比如说 SET mykey myvalue 这条命令就以如下格式记录到 AOF 缓冲中。
"*3
$3
SET
$5
mykey
$7
myvalue
"
AOF之所以直接采用文本协议格式,是因为所有写入命令都要进行追加操作,直接采用协议格式,避免了二次处理开销。
在AOF文件中,除了用于指定数据库的select命令(如select 0 为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。
3.2. 文件写入和同步
Redis 每次结束一个事件循环之前,它都会调用 flushAppendOnlyFile
函数,判断是否需要将 AOF 缓存区中的内容写入和同步到 AOF 文件中。
flushAppendOnlyFile
函数的行为由 redis.conf 配置中的 appendfsync
选项的值来决定。该选项有三个可选值,分别是 always
、 everysec
和 no
:
always
:Redis 在每个事件循环都要将 AOF 缓冲区中的所有内容写入到 AOF 文件,并且同步 AOF 文件(fsync),所以always
的效率是appendfsync
选项三个值当中最差的一个,但从安全性来说,也是最安全的。当发生故障停机时,AOF 持久化也只会丢失一个事件循环中所产生的命令数据。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。no
:Redis 在每一个事件循环都要将 AOF 缓冲区中的所有内容写入到 AOF 文件(wirte)。而 AOF 文件的同步由操作系统控制。这种模式下速度最快,但是同步的时间间隔较长(通常同步周期为30秒),出现故障时可能会丢失较多数据。everysec
:Redis 在每个事件循环都要将 AOF 缓冲区中的所有内容写入到 AOF 文件中(wirte),并且每隔一秒就要在子线程中对 AOF 文件进行一次同步(fsync)。从效率上看,该模式足够快。当发生故障停机时,只会丢失一秒钟的命令数据。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
Linux 系统下 write
操作会触发延迟写( delayed write )机制。Linux 在内核提供页缓存区用来提供硬盘 IO 性能。write
操作在写入系统缓冲区之后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或者达到特定时间周期,才真正将缓冲区的数据写入到硬盘。这样的操作虽然提高了效率,但也带来了安全问题:同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
因此系统同时提供了fsync
、fdatasync
等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。 fsync
针对单个文件操作,对其进行强制硬盘同步, fsync
将阻塞直到写入磁盘完成后返回,保证了数据持久化。
appendfsync
的三个值代表着三种不同的调用 fsync
的策略。调用 fsync
周期越频繁,读写效率就越差,但是相应的安全性越高,发生宕机时丢失的数据越少。
3.4. AOF 数据恢复
AOF 文件里边包含了重建 Redis 数据所需的所有写命令,所以 Redis 只要读入并重新执行一遍 AOF 文件里边保存的写命令,就可以还原 Redis 关闭之前的状态。
Redis 读取 AOF 文件并且还原数据库状态的详细步骤如下:
- 创建一个不带网络连接的的伪客户端( fake client),因为 Redis 的命令只能在客户端上下文中执行,而载入 AOF 文件时所使用的的命令直接来源于 AOF 文件而不是网络连接,所以服务器使用了一个没有网络连接的伪客户端来执行 AOF 文件保存的写命令,伪客户端执行命令的效果和带网络连接的客户端执行命令的效果完全一样的。
- 从 AOF 文件中分析并取出一条写命令。
- 使用伪客户端执行被读出的写命令。
- 一直执行步骤 2 和步骤3,直到 AOF 文件中的所有写命令都被处理完毕为止。
当完成以上步骤之后,AOF 文件所保存的数据库状态就会被完整还原出来。
3.5. AOF 重写
因为 AOF 持久化是通过保存被执行的写命令来记录 Redis 状态的,所以随着 Redis 长时间运行,AOF 文件中的内容会越来越多,文件的体积也会越来越大,如果不加以控制的话,体积过大的 AOF 文件很可能对 Redis 甚至宿主计算机造成影响,会导致数据恢复需要的时间过长。
为了解决 AOF 文件体积膨胀的问题,Redis 提供了 AOF 文件重写( rewrite) 功能。通过该功能,Redis 可以创建一个新的 AOF 文件来替代现有的 AOF 文件。新旧两个 AOF 文件所保存的 Redis 状态相同,但是新的 AOF 文件不会包含任何浪费空间的荣誉命令,所以新 AOF 文件的体积通常比旧 AOF 文件的体积要小得很多。
如上图所示,重写前要记录名为 list
的键的状态,AOF 文件要保存五条命令,而重写后,则只需要保存一条命令。
AOF 文件重写并不需要对现有的 AOF 文件进行任何读取、分析或者写入操作,而是通过读取服务器当前的数据库状态来实现的。首先从数据库中读取键现在的值,然后用一条命令去记录键值对,代替之前记录这个键值对的多条命令,这就是 AOF 重写功能的实现原理。
在实际过程中,为了避免在执行命令时造成客户端输入缓冲区溢出,AOF 重写在处理列表、哈希表、集合和有序集合这四种可能会带有多个元素的键时,会先检查键所包含的元素数量,如果数量超过 REDISAOFREWRITEITEMSPER_CMD ( 一般为64 )常量,则使用多条命令记录该键的值,而不是一条命令。
rewrite的触发机制主要有一下三个:
- 手动调用 bgrewriteaof 命令,如果当前有正在运行的 rewrite 子进程,则本次rewrite 会推迟执行,否则,直接触发一次 rewrite。
- 通过配置指令手动开启 AOF 功能,如果没有 RDB 子进程的情况下,会触发一次 rewrite,将当前数据库中的数据写入 rewrite 文件。
- 在 Redis 定时器中,如果有需要退出执行的 rewrite 并且没有正在运行的 RDB 或者 rewrite 子进程时,触发一次或者 AOF 文件大小已经到达配置的 rewrite 条件也会自动触发一次。
关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的。即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入。因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
3.6. AOF 后台重写
AOF重写的流程
-
Redis父进程首先判断当前是否存在正在执行 bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。前面曾介绍过,这个主要是基于性能方面的考虑。
-
父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
-
父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程,并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(图中的aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
-
子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
-
子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
使用新的AOF文件替换老文件,完成AOF重写。
AOF 重写函数会进行大量的写入操作,调用该函数的线程将被长时间阻塞,所以 Redis 在子进程中执行 AOF 重写操作。
- 子进程进行 AOF 重写期间,Redis 进程可以继续处理客户端命令请求。
- 子进程带有父进程的内存数据拷贝副本,在不适用锁的情况下,也可以保证数据的安全性。
但是,在子进程进行 AOF 重启期间,Redis接收客户端命令,会对现有数据库状态进行修改,从而导致数据当前状态和 重写后的 AOF 文件所保存的数据库状态不一致。
为此,Redis 设置了一个 AOF 重写缓冲区,这个缓冲区在服务器创建子进程之后开始使用,当 Redis 执行完一个写命令之后,它会同时将这个写命令发送给 AOF 缓冲区和 AOF 重写缓冲区。
当子进程完成 AOF 重写工作之后,它会向父进程发送一个信号,父进程在接收到该信号之后,会调用一个信号处理函数,并执行以下工作:
- 将 AOF 重写缓冲区中的所有内容写入到新的 AOF 文件中,保证新 AOF 文件保存的数据库状态和服务器当前状态一致。
- 对新的 AOF 文件进行改名,原子地覆盖现有 AOF 文件,完成新旧文件的替换
- 继续处理客户端请求命令。
在整个 AOF 后台重写过程中,只有信号处理函数执行时会对 Redis 主进程造成阻塞,在其他时候,AOF 后台重写都不会阻塞主进程。
3.7. 混合持久化
因为RDB持久化无法实时保存数据,数据库或者主机down机时,会丢失数据。AOF持久化虽然可以提高数据的安全性,但是在恢复数据时需要大量时间。因此Redis 4.0 推出RDB-AOF混合持久化。
- 持久化时,可以根据AOF的落盘策略实时刷盘。
- 恢复时先加载AOF文件中的RDB部分,然后再加载AOF文件部分。
4.0版本的混合持久化功能默认关闭,我们可以通过 aof-use-rdb-preamble
配置参数控制该功能的启用。5.0 版本默认开启。
混合持久化流程
混合持久化开启,系统根据策略触发aof rewrite时,fork 一个子线程将内存数据以RDB二进制格式写入AOF文件头部,那些在重写操作执行之后执行的 Redis 命令,则以AOF持久化的方式追加到AOF文件的末尾。
因为混合持久化是基于AOF重写的,所以和AOF rewrite的机制一致 。
混合持久化开启,同时配置RDB的save参数,Redis会生成rdb文件和AOF文件,而不是省略RDB文件。
4. 持久化策略选择
在选择持久化策略之前,首先要明白无论是RDB还是AOF,持久化的开启都是要付出性能方面代价的:对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力;对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题(后面会详细介绍这种阻塞),此外,AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对Redis主进程性能的影响会更大。
在实际生产环境中,根据数据量、应用对数据的安全要求、预算限制等不同情况,会有各种各样的持久化策略;如完全不使用任何持久化、使用RDB或AOF的一种,或同时开启RDB和AOF持久化等。此外,持久化的选择必须与Redis的主从策略一起考虑,因为主从复制与持久化同样具有数据备份的功能,而且主机master和从机slave可以独立的选择持久化方案。
下面分场景来讨论持久化策略的选择,下面的讨论也只是作为参考,实际方案可能更复杂更具多样性。
- 如果Redis中的数据完全丢弃也没有关系(如Redis完全用作DB层数据的cache),那么无论是单机,还是主从架构,都可以不进行任何持久化。
- 在单机环境下(对于个人开发者,这种情况可能比较常见),如果可以接受十几分钟或更多的数据丢失,选择RDB对Redis的性能更加有利;如果只能接受秒级别的数据丢失,应该选择AOF。
- 但在多数情况下,我们都会配置主从环境,slave的存在既可以实现数据的热备,也可以进行读写分离分担Redis读请求,以及在master宕掉后继续提供服务。
在这种情况下,一种可行的做法是:
- master:完全关闭持久化(包括RDB和AOF),这样可以让master的性能达到最好;
- slave:关闭RDB,开启AOF(如果对数据安全要求不高,开启RDB关闭AOF也可以),并定时对持久化文件进行备份(如备份到其他文件夹,并标记好备份的时间);然后关闭AOF的自动重写,然后添加定时任务,在每天Redis闲时(如凌晨12点)调用bgrewriteaof。
这里需要解释一下,为什么开启了主从复制,可以实现数据的热备份,还需要设置持久化呢?因为在一些特殊情况下,主从复制仍然不足以保证数据的安全,例如:
- master和slave进程同时停止:考虑这样一种场景,如果master和slave在同一栋大楼或同一个机房,则一次停电事故就可能导致master和slave机器同时关机,Redis进程停止;如果没有持久化,则面临的是数据的完全丢失。
- master误重启:考虑这样一种场景,master服务因为故障宕掉了,如果系统中有自动拉起机制(即检测到服务停止后重启该服务)将master自动重启,由于没有持久化文件,那么master重启后数据是空的,slave同步数据也变成了空的;如果master和slave都没有持久化,同样会面临数据的完全丢失。需要注意的是,即便是使用了哨兵(关于哨兵后面会有文章介绍)进行自动的主从切换,也有可能在哨兵轮询到master之前,便被自动拉起机制重启了。因此,应尽量避免“自动拉起机制”和“不做持久化”同时出现。
异地灾备:上述讨论的几种持久化策略,针对的都是一般的系统故障,如进程异常退出、宕机、断电等,这些故障不会损坏硬盘。但是对于一些可能导致硬盘损坏的灾难情况,如火灾地震,就需要进行异地灾备。
例如对于单机的情形,可以定时将RDB文件或重写后的AOF文件,通过scp拷贝到远程机器,如阿里云、AWS等;对于主从的情形,可以定时在master上执行bgsave,然后将RDB文件拷贝到远程机器,或者在slave上执行bgrewriteaof重写AOF文件后,将AOF文件拷贝到远程机器上。
一般来说,由于RDB文件文件小、恢复快,因此灾难恢复常用RDB文件;异地备份的频率根据数据安全性的需要及其它条件来确定,但最好不要低于一天一次。
5. Fork的问题
在Redis的实践中,众多因素限制了Redis单机的内存不能过大,例如:
- 当面对请求的暴增,需要从库扩容时,Redis内存过大会导致扩容时间太长;
- 当主机宕机时,切换主机后需要挂载从库,Redis内存过大导致挂载速度过慢;
- 以及持久化过程中的fork操作,下面详细说明。
当redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建应子进程。对于大多数操作系统来说fork是一个重量级操作。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存表。例如对于10GB的redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关 fork耗时跟内存量成正比,建议控制每个redis实例的内存
可以通过观察线上环境fork的耗时来进行调整。观察的方法如下:执行命令info stats,查看latest_fork_usec的值,单位为微秒。
父进程通过fork操作可以创建子进程;子进程创建后,父子进程共享代码段,不共享进程的数据空间,但是子进程会获得父进程的数据空间的副本。在操作系统fork的实际实现中,基本都采用了写时复制技术Linux (copy-on-write),即在父/子进程试图修改数据空间之前,父子进程实际上共享数据空间;但是当父/子进程的任何一个试图修改数据空间时,操作系统会为修改的那一部分(内存的一页)制作一个副本。虽然fork时,子进程不会复制父进程的数据空间,但是会复制内存页表(页表相当于内存的索引、目录);父进程的数据空间越大,内存页表越大,fork时复制耗时也会越多。
对于运行在一个linux/AMD64系统上的实例来说,内存会按照每页4KB的大小分页。为了实现虚拟地址到物理地址的转换,每一个进程将会存储一个分页表(树状形式表现),分页表将至少包含一个指向该进程地址空间的指针。所以一个空间大小为24GB的redis实例,需要的分页表大小为 24GB/4KB*8 = 48MB。(每个页表条目消耗 8 个字节)
但是 Linux Kernel 在 2.6.38 内存增加了 Transparent Huge Pages (THP) 机制,简单理解,它就是让页大小变大,本来一页为 4KB,开启 THP 机制后,一页大小为 2MB。它虽然可以加快 fork 速度( 要拷贝的页的数量减少 ),但是会导致 copy-on-write 复制内存页的单位从 4KB 增大为 2MB,如果父进程有大量写命令,会加重内存拷贝量,都是修改一个页的内容,但是页单位变大了,从而造成过度内存消耗。例如,以下两个执行 AOF 重写时的内存消耗日志:
// 开启 THPC * AOF rewrite: 1039 MB of memory used by copy-on-write
// 关闭 THPC * AOF rewrite: 9MB of memory used by copy-on-write
这两个日志出自同一个 Redis 进程,used_memory 总量是 1.5GB,子进程执行期间每秒写命令量都在 200 左右。当分别开启和关闭 THP 时,子进程内存消耗有天壤之别。所以,在高并发写的场景下开启 THP,子进程内存消耗可能是父进程的数倍,造成机器物理内存溢出。
所以说,Redis 产生的子进程并不需要消耗 1 倍的父进程内存,实际消耗根据期间写入命令量决定,所以需要预留一些内存防止溢出。并且建议关闭系统的 THP,防止 copy-on-write 期间内存过度消耗。不仅是 Redis,部署 MySQL 的机器一般也会关闭 THP。
6. AOF追加阻塞:硬盘的阻塞
在AOF中,如果AOF缓冲区的文件同步策略为everysec,则:在主线程中,命令写入aof_buf后调用系统write操作,write完成后主线程返回;fsync同步文件操作由专门的文件同步线程每秒调用一次。
这种做法的问题在于,如果硬盘负载过高,那么fsync操作可能会超过1s;如果Redis主线程持续高速向aof_buf写入命令,硬盘的负载可能会越来越大,IO资源消耗更快;如果此时Redis进程异常退出,丢失的数据也会越来越多,可能远超过1s。
因此,Redis的处理策略是这样的:主线程每次进行AOF会对比上次fsync成功的时间;如果距上次不到2s,主线程直接返回;如果超过2s,则主线程阻塞直到fsync同步完成。因此,如果系统硬盘负载过大导致fsync速度太慢,会导致Redis主线程的阻塞;此外,使用everysec配置,AOF最多可能丢失2s的数据,而不是1s。
AOF追加阻塞问题定位的方法:
- 监控info Persistence中的aof_delayed_fsync:当AOF追加阻塞发生时(即主线程等待fsync而阻塞),该指标累加。
- AOF阻塞时的Redis日志: Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.
- 如果AOF追加阻塞频繁发生,说明系统的硬盘负载太大;可以考虑更换IO速度更快的硬盘,或者通过IO监控分析工具对系统的IO负载进行分析,如iostat(系统级io)、iotop(io版的top)、pidstat等。
7. info查看持久化状态
127.0.0.1:32770> info persistence
# Persistence
loading:0
rdb_changes_since_last_save:36802699
rdb_bgsave_in_progress:0
rdb_last_save_time:1550653971
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:-1
rdb_current_bgsave_time_sec:-1
rdb_last_cow_size:0
aof_enabled:0
aof_rewrite_in_progress:0
aof_rewrite_scheduled:0
aof_last_rewrite_time_sec:-1
aof_current_rewrite_time_sec:-1
aof_last_bgrewrite_status:ok
aof_last_write_status:ok
aof_last_cow_size:0
其中比较重要的包括:
- rdb_last_bgsave_status:上次bgsave 执行结果,可以用于发现bgsave错误
- rdb_last_bgsave_time_sec:上次bgsave执行时间(单位是s),可以用于发现bgsave是否耗时过长
- aof_enabled:AOF是否开启
- aof_last_rewrite_time_sec: 上次文件重写执行时间(单位是s),可以用于发现文件重写是否耗时过长
- aof_last_bgrewrite_status: 上次bgrewrite执行结果,可以用于发现bgrewrite错误
- aof_buffer_length和aof_rewrite_buffer_length:aof缓存区大小和aof重写缓冲区大小
- aof_delayed_fsync:AOF追加阻塞情况的统计
127.0.0.1:32770> info stats
# Stats
...
latest_fork_usec:0
...
8. 参考资料
https://mp.weixin.qq.com/s/kQXmxu_VEbO5zqx15_A8DQ
https://mp.weixin.qq.com/s/IcluRyxPclQzsEkD55aJVA
https://mp.weixin.qq.com/s/aCs7JUaS2zihpHt60wbbxA
https://mp.weixin.qq.com/s/lPwPb-d7PZc_2oFvJytsyw